
TECHNICAL NOTES SERIES

JOWETT JAVELIN – PA, PB, PC, PD & PE JOWETT JUPITER – SA & SC

A L.H.S. crankcase half showing use of Perkins bearing shells and separate thrust bearings.

PART VIII – THE CRANKCASE SET

The Jowett Car Club of Australia Incorporated is not responsible for any inaccuracies or changes that may occur within this document. Every effort has been made to ensure accuracy. It is not a Jowett Car Club publication and, therefore, the Club has no control over its contents. These Technical Notes have been compiled by using the information that was available, which was deemed accurate at the time.

CONTENTS

Topic Discussed	Page No.
INTRODUCTORY COMMENT FOR TECHNICAL NOTES	3
Introduction	3
CRANKCASE IDENTIFICATION	4
CRANKCASE SPECIFICATION	5
INSPECTION	5
MODIFYING THE CRANKCASE	7
REPAIRS TO THE CRANKCASE SET	7
REPAIR CONSIDERATIONS	8
THREAD REPAIR TECHNIQUES	9
CONCLUSION	12

WARNING! ASBESTOS COULD BE PRESENT IN GASKETS AND FIBRE WASHERS

INTRODUCTORY COMMENT FOR TECHNICAL NOTES

These introductory notes should be read prior to reading Part VIII of the Technical Notes Series.

The Jowett Technical Notes Series have been an ongoing activity for several years. That means that some techniques and specifications may have been superseded in later notes on the same, or associated topics in the series. Also be aware that some topics and recommendations may be specific to certain Engine Serial Number ranges. It appears that, in Australia, the various State Main Agents did not carry out Service Bulletin information during Jowett active times. A set of known Service Bulletins is in Part III.

Some of the notes are restorations of what was written by members of the Jowett Car Club (UK), the Jowett Car Club (NZ) and by members of the JCCA.

Over the years of involvement with matters Jowett, and with the dawning of the personal computer age, a personal decision was made to help members of the Jowett Car Club of Australia Inc. with technical information. Included with the Technical Notes are 'restored' versions of the Javelin and Jupiter Maintenance Manuals and the associated Spare Parts Catalogues. Future generations will prefer to flick through images on their personal device screens, rather than leafing through pages in a tattered and oil stained book to access information.

The term 'restored' has been used because it soon became apparent that, as with our efforts in restoring Jowett vehicles, we desire excellent quality of workmanship in the reproduction of Jowett related documentation. Not for us the crude, and crooked, photocopies that have been issued over the years. These have, even though accurate at their time, become partly out of date.

Hence the decision to 'restore' the publications and documents that have come to hand.

It should be noted that the Javelin and Jupiter Spare Parts Catalogue is a combination of all the catalogues that were to hand (from 1948 to 1953).

The Maintenance Manuals were originally written on the assumption that they would be used by skilled motor mechanics who had attended service training courses conducted by Jowett Cars Limited and after works closure, were made available for owners who had reasonable mechanical knowledge of motor car maintenance and overhaul.

Included with the Technical Notes Series is a Lucas Overseas Correspondence Course, which can be of great assistance when trouble-shooting electrical problems related to your Jowett, or any other British vehicle of the same period.

Please be aware that this is an ongoing project

Mike Allfrey. – February, 2024

Introduction

From as early as 1910 the Jowett Company had manufactured cars and light commercial vehicles that featured horizontally opposed twin cylinder engines. They were of 6 – 8 horsepower, with the 8 horsepower version surviving until the cessation of manufacture in 1953. Its final use was in the Bradford range of light commercial vehicles. In the years prior to the Second World War the company decided to add a horizontally opposed four-cylinder engine to their range.

After much experimentation a horizontally opposed side valve engine was introduced in the Jason saloon at the 1936 London motor show. Later, a twin carburettor Jupiter model was introduced. This engine remained in production until the commencement of WW II. After the war the flat four engine type was further exploited by Jowett Cars Limited when the Javelin saloon was introduced in late 1947. Both the car and its engine were completely new. This exciting new car was the result of new manufacturing techniques and procedures that had not been used previously by the Company. Indeed, some of the new production techniques were pioneered by Jowett Cars Limited.

The engine used in the Javelin featured a die-cast aluminium crankcase (cylinder block) that was joined along its centreline and featured wet cast iron cylinder liners. It was the first mass produced motorcar to feature a die-cast aluminium crankcase.

The centreline joint was a new production technique for the factory. All previous engines manufactured by Jowett had one-piece aluminium crankcases that used separate cast iron cylinder barrels attached to each side. Indeed, this type was first considered for the Javelin it its initial design stage.

However, with the need for higher engine performance that could be ably produced by the proposed overhead valve configuration, there was a need for a well supported three main bearing crankshaft. It was soon determined that a split, well reinforced crankcase would be the most satisfactory route to take. A single piece aluminium crankcase was tried, but it was found to transmit an excessive amount of engine noise and the centre main bearing was difficult to hold rigid.

Thus, after considerable development work and testing of different types and metals, for the crankcase, it was decided to use the die-cast, centre joint line, aluminium crankcase in production. Improvements made to the original design will be discussed later.

The crankcase used in the Javelin and Jupiter motorcars is, if cared for properly, an extremely durable unit. The concerns that can be attributed to the crankcase's design are mostly generated by the failure of other components, or by misunderstanding of the Jowett engine's assembly requirements.

Crankcase Identification

The primary aspect of crankcase identification is to establish whether the crankcase assembly is a matched set. There is a set number stamped into the upper face of the front of each half. These numbers, which can differ from the engine number, are unique to the crankcase set. They are not as prominently stamped as the engine's Serial Number is stamped into its plinth. It is vitally important that the set numbers match.

The Engine Number can assist in identifying the type of crankcase set being examined. Engine Numbers with the letters PA, PB, PC, PD (Javelin) and SA (Jupiter) within them indicate that the crankcase is of the earlier type. Those engine Numbers containing PE and SC can be considered to be of the later type. However, some PD Javelins and SA Jupiters were equipped with the later style crankcase sets.

In addition to the above, there were sets of crankcases of the earlier type that had enlarged oil galleries and machined oil grooves in the main bearing supports.

The engineering changes and Engine Number break points were as follows:

E1 PC 16744 Oil groove added to main bearing bore.

E2 PD 21937 Crankcase oil flow increased.

E2 PD 22190 Redesigned crankcase introduced.

E2 PD 22221 Series III engine introduced.
 E2 SA 882 Series III engine introduced.
 Set No. 26574 Synthetic rubber liner seal fitted.

Set No. 26496 Oil gallery plugs improved.

There are three basic crankcase castings, which appear, and can be identified as follows:

- The very early crankcase is similar in detail to the drawings in the various parts lists. It is a
 definitely heavier casting and the most noticeable difference is a flange formed above the
 sump rim.
- 2. The most common die cast crankcase.
- 3. The Series III crankcase which has radial webs around the main bearing supports and is stamped '3' on the shoulder above the petrol pump mounting, and 'PE' above the engine number.

There are other differences too, which arise in all forms of crankcase since many reconditioned engines had crankcases modified to bring them as close to the Series III type as possible. These modifications included machining an oil way in the main bearing seatings and opening up the oil drilling from the oil delivery pipe to the later Tecalemit type rear timing cover. Moreover, some Phase I and Phase II engines had their crankcases replaced by new crankcase sets of Series III type, but without any outward marks of '3' or 'PE', but simply the copy of the previous engine numbers.

The crankcase halves were always made in pairs, particularly as far as machining of the main bearing and camshaft bores were concerned. Curiously enough the machining of the main bearing supports was not absolutely identical in all crankcases, and in fact, the centre line of the crankshaft can have differing alignments, from side to side and up and down, with reference to the crankcase.

Naturally, this means that the likelihood of two random crankcase halves matching is remote and they will probably differ to a degree, which makes it impossible to put them together. The error in machining the main bearing supports slightly to the left or right of centre is decidedly worrying when it is encountered, since it is obvious that one bearing shell protrudes above the face of the crankcase in which it is located and, of course, the matching half looks to be too small for the housing.

A more obscure difficulty is related to this problem of one-off boring of crankcases. Whilst it is often assumed that any flywheel/clutch housing will fit any crankcase, this is not exactly so. The bore in the rear of the housing which takes the gearbox clutch shaft cover, Part No. J50007, is also machined to match the crankcase – at least it should be according to the original Jowett Cars Limited manufacture. That is to say it was centred on the main bearing bores in the crankcase with which the flywheel/clutch housing should have been used. Thus it is just possible that the wrong housing would put the clutch friction disc far enough out of centre and alignment to cause trouble with excessive wear, judder etc. It is fortunate that this cause of trouble at the clutch has not been traced, but it is certainly a possibility.

Another difference less commonly observed in crankcases is that of the oil feed holes to the tappets. On the original hydraulic tappet crankcases the oil galleries were drilled so that their diameter broke through into the tappet bores and thus there would be large oil supply holes, which varied quite an amount in size. Usually they were between ¼-in. and ¾-in. in diameter. When solid tappets were introduced these large oil feed holes became an obvious source of oil pressure loss and of course, the solid tappets required only a relatively small feed of oil for lubrication. Therefore on Series III crankcases and on some later crankcases of the earlier type, the oil galleries were drilled above the tappet bores and do not intersect them. The oil feed is about ¹/₁6-in. diameter, drilled obliquely into the gallery, drilling from the inside of the crankcase through the mouth of the tappet bore. This means that the oil feed hole is insufficiently large to operate hydraulic tappets properly and in any case is not correctly situated. It also means that low oil pressure at low idle with solid tappets on an otherwise good engine can be related to the oil loss from hydraulic type oil feed holes in the tappet bore. A further complication worthy of mention is that some Series III crankcases were certainly made for hydraulic tappets, and the only way to find out is to remove a tappet and feel for the drilling with your little finger.

Crankcase Specification

The following specifications apply to the crankcase used in Javelin and Jupiter motorcars:

Material DTD 133B Aluminium allov

Cylinder Head Studs %-in. dia. EN16 Steel

Bore for Liners 3.1895 - 3.1880-in. (81.0133 - 80.9752 mm)Bore for Tappets 0.8130 - 0.8135-in. (20.6502 - 20.6629 mm)Bore for Camshaft 1.502 - 1.501-in. (38.1508 - 38.1254 mm)Distance Between Main Bearing Bore and Camshaft Bore Centres:

4.413 – 4.418-in. (112.090 – 112.217 mm)

Bore for Main Bearing 2-395-in. (60-833 mm)

Clutch Housing* Dedicated to Crankcase Set Front Timing Cover* Dedicated to Crankcase Set

Inspection

Before using a crankcase for engine overhauling purposes, it should be carefully inspected. The crankcase set should be thoroughly cleaned prior to examination. It is wise to check first for cracks which may have been caused by frost, coolant leakage into a cylinder or simply, the inappropriate method of engine assembly.

The following areas should be carefully examined for cracks:

^{*} Not all marked to identify with a crankcase set. It was probably assumed that these components would stay together for the life of the car.

- 1. Along the underside of each half, outboard of the sump stud rim (about one inch out). Cause Frost damage can cause cracks in these areas.
- 2. Inside the push rod chamber over number four cylinder.
 - Cause The cause of cracks in this area can be caused by too much cylinder liner protrusion, incorrect use of the cylinder head studs (threading in upside down) or frost damage.
- 3. Between the coolant inlets and the cylinder head gasket surface, running vertically at the rear faces. Cracks here can also run outwards to the cylinder head gasket surface.
 - Cause Too much cylinder liner protrusion and/or neglecting to install the water inlet elbows prior to tightening cylinder head nuts. Also can be caused by frost.
- 4. Along the front edges of the front faces between the water transfers and timing housing. Cause Frost damage.
- Vertically from the sump face between the petrol pump flange and the front of number two cylinder (sharp right-angle due to machining the petrol pump flange surface).
 Cause – Fatique.
- 6. Internally, at counterbores for cylinder head studs Nos. 2, 3, 5, 6, 7, 8, 9 and 10, progressing along the stud bosses towards crankcase centre line.
 - Cause Cracks here can be the result of too much cylinder liner protrusion, or due to bent cylinder head studs.
- 9. Very severe cracking inside the push rod chests.
 - Cause When a cylinder head gasket leaks and one cylinder partly fills with coolant, engine starts instantly and the coolant is in a cylinder under compression after initial engine start-up.
- 10. Cracking can be found running through the centre camshaft bearing bore and continuing to the top joint flange.
 - Cause Is usually due to the upper centre tie bolt being forgotten in the dismantling process and the use of levers in the attempt to separate the two crankcase halves.
- 11. A major crack inside the tappet chest can be caused by the engine starting with one cylinder part full of coolant, due to cylinder head gasket leakage.

Usually cylinder blocks and crankcases are recommended to be inspected for cracks caused by frozen cooling water trapped in the water jackets. Obviously, such frost damage is not generally a concern in Australia.

In those instances where cracking has occurred due to excessive cylinder liner protrusion, a cause can be also attributed to uneven tightening down of the cylinder head. This should be carried out in three equal stages.

Provided the crankcase is thoroughly cleaned and properly prepared for welding, the aluminium welds easily. Care has to be taken with respect to distortion. Modern welding techniques can reduce the risk of distortion. Good welding practices can be used to build-up the wall thickness of the coolant jackets where corrosion has taken its toll.

Other areas that need careful examination:

- 1. Stripped threads at the rear timing cover securing bolts. Frequently these have been tapped out to %-in. BSW or UNC thread forms. Such repairs are an indication that the securing bolts were over tightened in attempts to stop oil leakage due to a failed gasket. This practice is not a good solution to the problem because the larger diameter thread will be very close to, or could break through into the oil gallery drilling.
- 2. Stripped threads at the oil pump mounting studs.
- 3. Stripped threads at the petrol pump mounting bolts.
- 4. Stripped sump stud threads.
- 5. Cylinder head stud threads are in sound condition and that there are no cracks in surface that is close to cylinder liner flange. Some crankcases are very thin in this area. Such cracks have been successfully welded with the stud in situ.

- 6. Wear at camshaft bearing bores. The centre camshaft bearing bore could be worn more than the other two.
- 7. Distortion at the main bearing supports. When checking this area, look for distortion that may have occurred because of crankshaft breakage at high engine speeds. Another cause of distortion can be over tightening of the six crankcase tie bolts. Yet another cause could be due to sloppy assembly procedures allowing foreign matter to remain on the crankcase joint faces.
- 8. The main bearing bores, and the clutch housing seal bore, should be measured for truth and the provision of correct shell bearing crush. Loose bearing shells will cause crankshaft rumble and oil pressure loss.
- 9. All gasket and joint surfaces are free of burrs and distortion around threaded in studs.
- 10. Break-through of the five upper flange bolt holes into oil wet area. This is not a serious concern, but care needs to be taken during engine assembly, to ensure prevention of oil leaks.
- 11. Spot facings for tie bolt flat washers are smooth and flat. At the three upper tie-bolts, the oil galleries for the main bearings pass through a counterbore at the tie-bolt shank there is full engine oil pressure in the upper tie bolt bores. Use Dowty washers to make effective seal.
- 12. Fretting damage to front engine mounting bracket support bosses. This is caused by prolonged use with loose securing nuts.
- 13. Check the general appearance of the outer surfaces of the crankcase. An engine that has been overhauled should be of good presentation.

Modifying The Crankcase

After inspection of the crankcase set, due consideration should be given to modifying the crankcase set to aid durability of other components. There are a number of modifications that can be considered:

- 1. Machining grooves in the main bearing supports so that lubricating oil can be delivered from two points instead of one.
- Conversion of rear main bearing support so that separate thrust bearings can be installed. Due to scarcity of the original flanged bearing in the under sizes, this is a very worthwhile modification. If this modification is installed, a benefit is the use of the same bearing material for all three main bearings.
- 3. Enlargement of the oil feed gallery to the oil filter this should be done in conjunction with increasing the oil feed pipe and oil filter housing drilling diameters.
- 4. In the L.H.S. half, relocation of the oil drilling from the oil filter to the longitudinal oil gallery. This can be achieved by machining a larger diameter counter bore, installing a suitable plug and re-drilling the oil drilling further (2 mm) away from the rear timing cover securing bolt thread.
- 5. Extending the rear cylinder head stud through the water inlet bore. This requires the use of a long series 3/8-in. BSF tap, the tap and drill set are available for loan from the Club. Jowett Engineering modified crankcases for their works reconditioned engines in this manner.
- Installing those studs that break through into oil wet areas with good quality gasket sealant.
 Loctite Master Gasket 518 is suitable provided that the threads on studs and in crankcase are final-cleaned with Loctite 7471 Cleaner/Activator or methylated spirits.

Repairs To The Crankcase Set

With the onset of age, combined with the results of unskilled work on crankcase sets, a Jowett crankcase can require some specialist welding and machining work to make the set useable again. With skill and care, this can be achieved. In the event that a crankcase set has been found to have undergone welding – whether for rebuilding stripped threads, building-up of thin coolant water jackets (corrosion) or the result of damage due to broken connecting rods or even the crankshaft – it could be wise to source an unwelded crankcase set.

Modern aluminium welding techniques have meant that a weld repair is reasonably feasible. However, a careful watch must be maintained on the soundness of the parent metal, and there must be awareness that there can also be distortion due to local high temperatures and irregular cooling rates after welding.

Consideration should also be given to the quality of the parent metal of the crankcase set. In the early post World War II period, in Britain, it was known that stocks of aluminium for aircraft production were a cheap source of that metal for the motor industry.

Repair Considerations

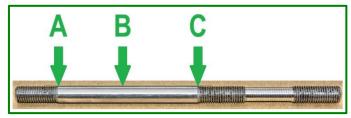
It is absolutely vital that, when considering the repair of a crankcase set, the following points be noted:

- 1. That the two halves are a matching set. On the front coolant jacket face there is a dedicated number stamped above the water transfers. This number (e.g. 18465) is not the engine number. This set number must appear upon each half of the crankcase set. Should these dedicated set numbers be different, and the matching number for the set be unavailable, a different crankcase set should be sourced before any work is done.
- During the final years that Jowett Engineering Limited were operating, in desperation 'oddhalf' crankcase sets were reworked in order to maintain a supply of reconditioned engines. To enable the use of odd-halves, a number of machining operations were carried out. These were:
 - a) The two halves were securely bolted together and checked for viable use as a set.
 - b) The main bearing and camshaft tunnels were bored oversize to ensure that there was no machining tolerance off-set in the tunnel bores.
 - c) Thicker main bearing shells were made especially for Jowett Engineering. These bearing shells are no longer available through the trade.
 - d) Series III camshafts, with larger diameter bearing journals, were produced for odd-half crankcase sets. Camshaft drive sprockets and dowel pegs were also supplied.
 - Note that for items a), b), c) and d), the differences between the two halves would have been in the order of 0.001 0.005-in.
 - e) The specified distance between the crankshaft and camshaft centres would have been to the original specification (4·413 4·418-in.).
 - f) The front and rear faces of the crankcase set could have been machined to provide flush gasket surfaces for the front timing cover and the flywheel/clutch housing.
 - g) The dowel pegs for the front timing cover and the flywheel/clutch housing were re-jigged, to ensure that the crankshaft oil seal bores were concentric with the main bearing tunnel.
 - h) After the two covers were bolted in place, the oil sump gasket flanges were also milled to provide a flush surface for a good sump gasket fit.
 - i) The AC petrol pump mounting surface was also milled to provide an even surface at the crankcase and timing cover for the petrol pump gasket.
- It is believed that just one odd-half crankcase set came to Australia. However, this type of set should be considered when examining an engine for repair. Jowett Engineering did place an identification plate at the L.H.S. rear with 'Reconditioned Engine' information – undersizes and oversizes had been recorded.
- 3. When considering the repair of a crankcase set, it is important that the front timing cover and flywheel/clutch housing match the crankcase set i.e. that they are the original items. It is quite possible that one or both of these items have been changed at some time over the years. This item is important to ensure that oil seal bores in the covers are concentric with the main bearing tunnel bores, and to maintain flush fit-up at the sump gasket and petrol pump mating flanges. Should a matching set of the four items be found, it is recommended that the set number for the crankcase is stamped or engraved into the two covers as well.
- 5. Not advisable, however, in those instances where excessive wear at the camshaft tunnel bores, or there is distortion in the main bearing supports that affects the fit of the main bearing shells, then, in the case of a matching crankcase set, both mating faces can, after removing

the dowel pins, be minimally machined. The same amount of parent metal, and the absolute minimum, should be machined off each side to maintain acceptable fit-up of other engine components. Care needs to be taken to ensure that the oil pump gear and the crankshaft mounted worm-wheel have sufficient operating clearance. It can be that such machining will take-up wear between these components.

- 6. After machining the mating faces of the crankcase set, the machining of the camshaft and main bearing tunnels can be carried out.
- 7. During engine assembly, be sure to check piston protrusion at T.D.C. for all cylinders. Up to 0.012-in. is permissible.
- 8. The prime purpose of the dowels for the front timing cover, and the flywheel/clutch housing is not only structural, these dowels are also used to ensure that the sump gasket faces are flush and, importantly, the oil seal bores are concentric with the main bearing centreline.
- 9. It is not good practice to force the two covers over the dowel pegs. The side walls of the front timing cover are relatively flexible and could, in some cases, disrupt the concentricity of the oil seal bores. At the flywheel/clutch housing, the practice of forcing them over the dowels is out-and-out abuse of matched components and must not be embraced.
 - The dowel bores in the covers can be accurately machined with a correct size end-mill to exactly match the amount that has been removed from the joint faces and allows the covers to still fit snugly over the front dowel pegs and the rear hollow dowels without force.
- 10. There can also be a requirement to machine the cylinder head gasket faces to clean up cylinder head stud bosses and coolant jacket walls that have been repaired by build-up welding. Also, uneven cylinder head nut tightening in the past, could have caused some distortion.

The machining of these faces involves the loss of balance pipe protrusion. After the machining operation, the flared end of the balance pipe will need to be examined carefully. In most cases, a modern cylinder head gasket installed with good quality sealant (Loctite Master Gasket 518 around the flare), should be capable of maintaining the vacuum.


In the situation where there is doubt about the quality of the balance pipe flared end, a brass thimble can be machined to provide the original 0·012-in. protrusion. This has been done in the past by installing one part of a brass canvas eyelet that then can be Loctite 518 retained in the balance pipe and be firmly clamped in place while the Loctite cures. Once cured, the eyelet should be carefully filed to provide the required 0·012-in. protrusion.

Thread Repair Techniques

The following instructions may appear to be daunting, however, the rigorous procedure can be carried out easily. The Recoil system described here has no connection with the writer, it is used purely to illustrate a procedure that has proved to be successful.

It has to be understood that all studs that are threaded into the crankcase, and other components, have a purpose designed length of thread that can be screwed into position during engine assembly. As an example, refer to *Figure 1*, the cylinder head studs have a longer threaded portion for extra strength when they are tightened into the aluminium crankcase. Any repair of a stripped crankcase thread needs to take this point firmly into consideration. When the crankcase was designed, the depth of useable thread was carefully calculated to ensure that the stud tightened against its shank, **B** *Figure 4*, not at the inner end of the thread in the crankcase. In other words, the stud must not 'bottom' in the threaded hole. In this installation, the stud shank must seat in the counterbore provided. All of this requires due consideration prior to repairing a stripped thread.

Right: Figure 1. Showing a cylinder head stud where: 'A' = End of thread for cylinder head nut; 'B' = Stud shank; 'C' = Point where stud shank is seated in crankcase counterbore after tightening. Advertising for thread repair kits claims that a thread insert, such as Recoil, when installed is stronger than the parent metal that had stripped.

stronger than the parent metal that had stripped. In some cases that may be true, but with aged aluminium, that may not be the case. A repairer will, obviously, use a thread insert provided in the

kit to complete a repair which, with a Jowett cylinder head stud, may not be of sufficient length to hold the clamping force of the cylinder head nuts when a short thread insert coil has been installed. This is particularly so when a tightened-home stud protrudes through the thread insert by, for example, 40% of its thread length. That represents 40% of the stud's designed thread is not in effective use, and the short thread insert coil will be taking all of the torque applied at the stud.

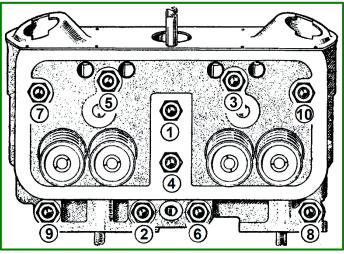
In addition, it is common to see a stripped thread in a boss that has cracked close to the cylinder liner lip. This situation further reduces a thread insert's ability to hold the load imposed on it. The next segment informs how a successful repair can be put together.

Repairing A Stripped Cylinder Head Stud Thread In Crankcase

Stripped threads in the aluminium crankcase can be repaired by using Recoil kits specially designed to suit BSF threads. Extra thread inserts can be purchased separately. There are two lengths of insert coils available over the counter. It is possible that the Jowett Car Club of Australia can negotiate with the company to have thread insert coils manufactured to suit the length of the original threads in the crankcase. The Recoil kits are available from CBC Australia, or an engineer's supplier store.

Right: Figure 2. Example of Recoil thread repair kit.

It should be noted that there are different kits for different size threads. The content of a kit include a thread tap for cutting the oversize thread that will locate the repair insert, a suitable tap wrench is required. A hand tool for winding in the insert is included, with an adjustable collar to set the thread insert at the correct height within the threaded hole. Read the kit instruction sheet.


A small Allen key is provided for setting the collar on the tool's shank. The collar should be set so that the thread insert coil, when installed, is flush with the counterbore.

As an example, to repair a cylinder head stud thread, proceed as follows:

1. Set the crankcase half up on a drilling machine so that the cylinder head gasket face is at 90° to the drill spindle in two planes at 90°. The crankcase dowels, Part No. 52137, should be removed and a protective aluminium plate utilised to protect the joint face from damage.

Right: Figure 3. Cylinder head nut sequence.

2. Some kits contain a drill bit to drill out any remaining thread in the hole. This the required tap size and should just reach the bottom of the original drilling. It should be noted that at stud numbers 3, 5, 7 (front L.H.S) and 10 (front R.H.S.) the drilled depth is very close to breaking into the tappet chest. Refer to *Figure 3*, for cylinder head stud identification.

- 3. After drilling, grip the supplied tap firmly in the drill chuck so that with a combination of guiding the tap with the drill control handle, rotate the chuck/spindle clock-wise to establish the thread cutting process. Once started, loosen off the chuck, raise it, and continue tapping the thread using a suitable tap wrench. Keep the tap square to the head gasket surface. Use a cutting oil, that is suitable for cutting aluminium, to lubricate the thread cutting tap.
- 4. In a darkened work area, shine a pencil torch beam into the new thread and look for light escaping into the coolant jacket area, and into the tappet chest. Should light escape in these areas, through small openings, then thoroughly clean and apply a build-up of Permatex Cold Weld two-pack plastic metal to make an air-tight seal. Allow generous time to cure, then clean out the thread with the Recoil tap and inspect the repair. Such a repair can save a crankcase.
- 5. Clean out all swarf with a compressed air jet.

- 6. **IMPORTANT!** Originally, all cylinder head stud threads were set absolutely perpendicular to the cylinder head gasket face, such positioning must be maintained.
- 7. With care, the repair insert should be wound into place using the tool supplied. The tang of the insert can be broken off cleanly with a close fitting, inside the insert, parallel punch and a light hammer blow. The flat end punch should be a close fit, otherwise the tang may bend the coil of the insert prior to breaking.
- 8. The Jowett cylinder head studs have relatively long threads that screw into the crankcase. Should there be doubt that the repair insert is not of sufficient length for the task, carefully thread the insert onto the long thread of a valve gear (rocker cover) stud (Part No. 50703) until the tang just contacts the end of the stud. Measure the overall length of the insert on the stud and compare it with the depth of the thread in the crankcase. Be sure to take into account the ½-in. counterbore for the stud shank.

Should the Recoil insert be too short, it may require that a second thread repair insert should be 'stacked' on top of the first insert. This is a technique that requires great care and a feel for the work being done. The Recoil company were contacted about 'stacking' thread inserts to gain more effective working length, their response was that it was not recommended, but had been successfully achieved. To 'stack' thread insert coils, proceed as follows:

- a) Exercise great care during the installation procedure.
- b) The first insert should be wound into the thread until it bottoms in the thread, with care, this can be felt as it reaches the inward taper at end of the thread.
- c) Withdraw the installing tool and carefully break off the tang, making sure that the broken off piece is removed.
- d) With a pointed probe count the remaining threads in the hole as far as the edge of the counterbore, 1/8-in. below the head gasket surface.
- e) Then with the second insert, count the coils from the tang, and with sharp side cutters, cut off the surplus coils.
- f) With great care wind in the second insert until it gently contacts the trailing coil of the first insert. Do not exert any force.
- g) Lift out the hand tool and verify that the second insert is flush with the counterbore ledge. Again, with the snug fitting punch, cleanly break off the second tang, then try-fit the valve gear stud and, should it meet any resistance, immediately withdraw and clean up the repaired thread with a copiously lubricated intermediate 3/8-in. BSF hand tap, with care.

The thread insert cannot be wound out with the installer tool. Recoil can supply a sprag tool that grips the insert for removal. The insert cannot be reused.

The foregoing procedure should result in a successful repair. After the cylinder head stud threads have been repaired, the cylinder head studs should be installed into the crankcase:

- 1. Wash out threads with degreasing fluid. Finish clean out with compressed air.
- 2. Flush out thread with Loctite 7471 Primer Activator and allow to dry.
- 3. Repeat the procedure (2) at the longer thread on the cylinder head stud.
- 4. Apply Loctite 263 Studloc at the longer thread and immediately screw the stud home into the crankcase, and tighten with a torque wrench to 15 18 lb. ft. Leave to fully cure. Wipe away any residual Loctite 263 from around the shank of the stud.
- 5. It should be noted that Loctite locking and sealing materials are anaerobic meaning that they only cure effectively in the complete absence of air. The home position of the stud should enable proper curing.
- 6. It is advisable to pack in Permatex Cold Weld around the stud shanks, into the counterbores flush with the head gasket surface, to stabilise any looseness. Allow to fully cure.

With careful attention to completing thread repairs, the cylinder head studs should be positioned so that the cylinder heads slide over them with ease.

Note: In the majority of instances, where a thread has been stripped, there will be some original thread remaining for a test stud to be screwed into the remaining thread to find true depth.

To accurately measure the depth of the thread, screw a nut onto the long thread of a valve gear stud, with the flat face of the nut towards the outer end of the thread, the nut should be screwed on a sufficient distance so that the stud can be threaded home in the crankcase, do not tighten the stud. Wind the nut until it makes contact with the cylinder head gasket surface and, without disturbing the nut, withdraw the stud. The dimension from under the nut to the end of the stud, less ½-in. (counterbore) is the accurately measured depth of the thread.

Timing Case Rear Cover Hold Down Threads

It should be noted that, at the two hold down threads for the timing case rear cover, the threads are at 90° to the gasket surface. This needs to be taken into account when tapping the thread for the repair insert. Another form of repair at the left hand side, is to drill the hole deeper and use a longer bolt in place of the original setscrew.

Conclusion

It has been decided to keep this part of the *Technical Notes Series*, to use as a dedicated ready reference in relation to general crankcase information.

Compiled by Mike Allfrey. With assistance from The Jowett Car Club (UK). With Thanks – January, 2006. Revised – February, 2024.