
TECHNICAL NOTES SERIES

JOWETT JAVELIN – PA, PB, PC, PD & PE JOWETT JUPITER – SA & SC

Above: Rear Hub Assembly.

- PART XXXI -

REAR HUB BEARING REPLACEMENT TECHNIQUE

The Jowett Car Club of Australia Incorporated is not responsible for any inaccuracies or changes that may occur within this document. Every effort has been made to ensure accuracy. It is not a Jowett Car Club publication and, therefore, the Club has no control over its contents. These Technical Notes have been compiled by using the information that was available, which was deemed accurate at the time.

Compiled by Mike Allfrey – 12th November, 2015. Revised – March, 2024.

CONTENTS

Topic Discussed	Page No.
INTRODUCTORY COMMENT FOR TECHNICAL NOTES	3
REAR HUB BEARING REPLACEMENT	3
Introduction	3
DISMANTLING THE REAR HUB ASSEMBLY	4
COMMENTS ON BEARING REPLACEMENT	5
BEARING INSTALLATION	5
FROM SERVICE BULLETIN No. 017	6

WARNING! ASBESTOS COULD BE PRESENT IN GASKETS AND FIBRE WASHERS

INTRODUCTORY COMMENT FOR TECHNICAL NOTES

These introductory notes should be read prior to reading Part XXXI of the Technical Notes Series.

The Jowett Technical Notes Series have been an ongoing activity for several years. That means that some techniques and specifications may have been superseded in later notes on the same, or associated topics in the series. Also be aware that some topics and recommendations may be specific to certain Engine Serial Number ranges. It appears that, in Australia, the various State Main Agents did not carry out Service Bulletin information during Jowett active times. A set of known Service Bulletins is in Part III.

Some of the notes are restorations of what was written by members of the Jowett Car Club (UK), the Jowett Car Club (NZ) and by members of the JCCA.

Over the years of involvement with matters Jowett, and with the dawning of the personal computer age, a personal decision was made to help members of the Jowett Car Club of Australia Inc. with technical information. Included with the Technical Notes are 'restored' versions of the Javelin and Jupiter Maintenance Manuals and the associated Spare Parts Catalogues. Future generations will prefer to flick through images on their personal device screens, rather than leafing through pages in a tattered and oil stained book to access information.

The term 'restored' has been used because it soon became apparent that, as with our efforts in restoring Jowett vehicles, we desire excellent quality of workmanship in the reproduction of Jowett related documentation. Not for us the crude, and crooked, photocopies that have been issued over the years. These have, even though accurate at their time, become partly out of date.

Hence the decision to 'restore' the publications and documents that have come to hand.

It should be noted that the Javelin and Jupiter Spare Parts Catalogue is a combination of all the catalogues that were to hand (from 1948 to 1953).

The Maintenance Manuals were originally written on the assumption that they would be used by skilled motor mechanics who had attended service training courses conducted by Jowett Cars Limited and after works closure, were made available for owners who had reasonable mechanical knowledge of motor car maintenance and overhaul.

Included with the Technical Notes Series is a Lucas Overseas Correspondence Course, which can be of great assistance when trouble-shooting electrical problems related to your Jowett, or any other British vehicle of the same period.

Please be aware that this is an ongoing project

Mike Allfrey – February, 2024

REAR HUB BEARING REPLACEMENT Introduction

Without too much doubt, the rear hub bearings, no matter which Jowett model, are the most neglected item on the motor vehicle. We may grease them occasionally, but do we really service them? When the high ratio differential was installed into my Jupiter's rear axle, it was amazing just how worn the hub bearings were. The same has been discovered on my Javelin, which is being readied for the big one at Armidale. A spare axle was dismantled in this area and its hub bearings were found to be beyond re-use.

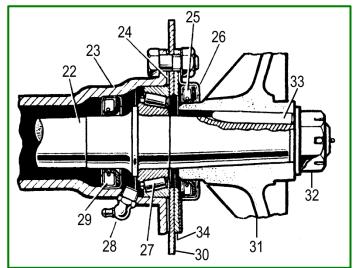
Very likely, it is a good idea to have a thorough examination of the bearings each time the brake drum is removed for brake servicing. It is but a simple matter to withdraw the half shafts once the brake backing plates have been removed. All that is required is a good slide hammer that will screw onto the threaded axle shaft. The club has a slide hammer to fit full hydraulic brake type half shafts for loan.

It is always a good idea to clean out all traces of the old grease and inspect the inner oil seal at this time. In this *Technical Note* a full hydraulic brake system axle has been used.

This illustration shows a cross section through one rear hub assembly. The inner end of the shaft is supported by the differential carrier and end float is controlled by a spacer block that straddles the spider gear shaft, in conjunction with shims at each hub bearing. It should be noted that there are two oil/grease seals in each hub. The inner seal is provided to prevent rear axle oil from mixing with the bearing grease. The outer seal is a special seal the prevents grease from entering the brake drum.

Another feature of this seal is that it prevents brake lining dust, which can be extremely abrasive when mixed with grease, from reaching the bearing lubricant.

Dismantling The Rear Hub Assemblies


Before any work is carried out, the car must be parked on firm level ground – preferably on a sound concrete floor. At this stage the hand brake should be firmly applied. The slotted nut that secures the

brake drum to the axle shaft should be removed before the car is jacked off the ground. This nut should be tight and a suitable 3/4" drive socket and bar should be used to loosen it. Later rear axles feature UNF threads for these nuts. Be sure to place the nut and its special washer in a safe place.

Figure 1. Section through rear hub. Item number identification is used in text.

In Figure 1, Items are identified as follows:

22 = Axle Shaft; 23 = Rear Axle Housing; 24= Shim Pack; 25 = Outer Grease Seal; 26 = Seal Cover; 27 = Axle Shaft Bearing; 28 = Grease Fitting; 29 = Inner Oil Seal; 30 = Brake Back Plate; 31 = Brake Drum; 32 = Axle Shaft Nut; 33 = Axle Shaft Key; 34 = Hub Bearing Retainer Plate.

- Chock the front wheels front and rear, jack up the rear of the car and place chassis stands under the rear of the chassis side members. Allow the axle to hang with the wheels clear of the floor. Leave the trolley jack under the rear axle, to just take the axle weight, for support.
- 2. Remove the road wheels, release the hand brake, fully back-off the rear brake adjusters and, using a suitable puller, withdraw the brake drum from its taper and drive key. A puller is available from the club on loan.

Note: It is a worthwhile idea to thoroughly clean the threaded puller boss on the brake drum with a rotary wire brush, to clean away any rust or paint. The text now describes the operation on one side of the rear axle.

- 3. Inboard of the brake back plate, remove the hand brake clevis split pin, the plain washer, the pin has a screwdriver slot for removal. Unscrew the pin and withdraw with the anti-rattle spring.
- 4. Carefully slacken-off the brake pipe union nut at the rear wheel cylinder. To conserve brake fluid, apply a clamp at the rear brake hose. Do not clamp the hose close to its ends, lightly clamp it in the middle or, wedge the brake pedal in the fully applied position after loosening one bleed screw. Should the hose be hard, replace it.
- 5. Loosen off the four bolts and nuts that secure the brake back plate to the axle housing, note the position of the flat sides on the hub bearing retainer plates (Item 34), remove the bolts and carefully withdraw the brake back plate from the hydraulic pipe. Be careful not to bend the pipe. Wipe the end of the pipe and wrap in adhesive tape to stop dirt ingress.
 - With a permanent marker pen, identify the brake back plate as being left or right hand side.
- 6. Clean away excessive grease from around the hub bearing.
- 7. There are adjusting shims, Item 24, inboard of the brake back plate, carefully remove these and identify them for the side of the axle they came from.
- 8. Screw a slide hammer fully on to the thread at the axle shaft, Item 22, and with several smart, direct, blows withdraw the axle shaft and the bearing's outer race (cup). The bearing outer race is a snug, but not tight fit in the axle housing. Take care when withdrawing the axle shaft most of its length is rough forged finish so that the inner seal is not damaged.
- 9. Wash all parts in suitable cleaning fluid and dry. Inspect the bearing rollers and their track in the outer race, Item 27. Look carefully for pitting, roller flattening, roller indentations in bearing cup, rust erosion and abnormal wear pattern. If there is any doubt about the condition of the bearing

- replace it with a new bearing assembly. Ideally, if one bearing requires replacement, then both bearings should be replaced.

Note: With an oil based felt tipped marker, identify the components from each side of the axle – LHS and RHS.

- 10. Examine the splined end of the axle shaft and check for twisted splines. Twisted splines indicate a partially shorn shaft and the shaft should be replaced.
- 11. Clean and carefully examine the inner seal assembly, Item 29, the leather lip should be smooth and there should be some spring to the lip. If the leather is damaged, replace the seal. This seal can be pulled out using a slide hammer with a suitable claw adaptor.

Comments On Bearing Replacement

It has to be appreciated that, in the vast majority of cases, the rear hub bearings have been in use for over sixty years, and in that time have been subjected to heavy loading at times. Consideration must be given to replacing the bearing if there is any doubt about its condition. Replacement during routine servicing can virtually eliminate the risk of bearing failure while on the roads and freeways. A rear wheel lock up at highway speed can be a daunting experience and should be avoided if at all possible.

Having removed the axle shaft and washed it, the next step, if replacing the bearing, is to press the shaft out of the bearing cone assembly. This is a job best done in an engineer's hydraulic press. I took my shafts to AA Bearings & Oil Seals in Nunawading to purchase the bearings and have the old ones pressed off and the new ones pressed fully home against the shaft shoulder. Dennis at AA Bearings very obligingly offered to provide this service at nominal cost.

AA Bearings were able to supply the inner seals, on the originals the leather was just about non existent. All up, the bearings, seals and fitting charge came to just under \$160.00, which compared with the cost of a breakdown on the road, is very reasonable.

Bearing Installation

Some of us may find the rear hub bearing installation a little bit daunting, but in reality the shimming process is quite simple. It has to be said that the Javelin Maintenance Manual deals quite heavily with the importance of centralizing the half shafts and properly shimming the bearings to provide the required end float at the rear axle shafts. The axle shafts require running clearance at the half shaft spacer (3HA-007-D) as well as for the hub bearing. Would that Jowett Cars Limited had practiced what they preached! My Javelin had 0·100-in. worth of shims at the R.H.S. and 0·015-in. at the L.H.S. The spare axle had a 0·030-in. shim at the R.H.S. and 0·025-in. shim pack at the L.H.S. It is known that the axle bearings in my Javelin have never been removed. It makes one wonder about the tolerances during manufacture and the care taken to centralize the spacer in the differential.

I have developed my own method of working out the shim packs to provide properly located axle half shafts.

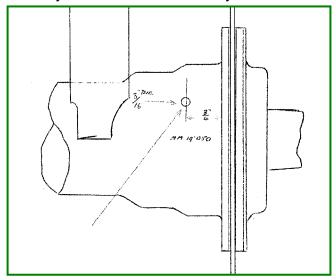
- a) Make sure that the inner oil seal is fully home against its shoulder in the axle housing. Apply a smear of grease to the lip of the seal.
- b) Make sure that the hub bearing cone is clean and well packed with clean grease. Apply a smear of grease to the entire surface of the axle shaft and carefully insert the shaft through the inner seal and, supporting the shaft, ensure that it engages with the differential side gear spline. Push the shaft fully home against the spacer.
- c) Carry out Steps a) and b) at the other side of the axle.
- d) Apply a smear of light grease to the outer diameter of the bearing cup and to its bore in the axle housing. Install the bearing cups, making sure that they are tapped in square.
- e) At the R.H. side, mount the hub bearing retainer plate with four bolts and nuts. Tighten the plate against the axle flange face to push the bearing cup fully home.
- f) At the L.H. side, loosely mount the bearing retainer plate. Make sure that the nuts are free-running on the bolt threads. For this exercise, use flat washers only, extra washers may be required.
- g) Carefully tighten the four bolts, equally, until slight pre-load can be felt at the shaft end. Pre-load will make the shaft feel tighter to turn. It should be noted that, while the bearing cup is being

pushed into the housing, some creaking will be heard, this is normal. Once the cup is fully home, give both shafts a gentle tap with a soft hammer on their ends. Re-check that the bearing cup is fully home against the bearing cone.

Note: Do not confuse inner oil seal drag with axle shaft bearing pre-load. Get a feel of how easy it is to rotate the shaft prior to any pre-load being placed on the bearing.

h) Once pre-load is felt, slack off the four L.H.S. nuts and re-tighten to just hold the bearing retainer plate against the bearing cup.

Note: The shims fit over the outer diameter of the hub bearing cup.

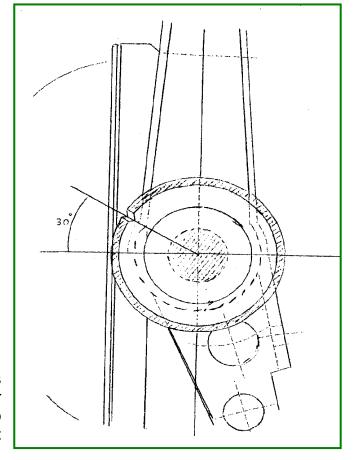

- i) Using a good quality set of feeler gauges, measure the gap between the bearing retainer plate and the machined face of the axle housing flange.
 - This dimension will provide the total amount of shim pack required.
- j). The specification for axle shaft end float is 0.006 to 0.008-in. It is probably better to aim for the lower end of the specification for the assembled axle. To the measurement taken at Step i), add 0.006-in. Example: Feeler gauge measurement was 0.060-in. + 0.006-in. = 0.066-in.
- k) Divide the total by two, to furnish the shim pack for each side; in this example 0.033-in.
- I) Slacken off the four R.H.S. bolts, with the bearing cup pushed right in.
- m) Remove the bearing securing plate from the L.H.S., apply a smear of grease to the shim faces, install the 0·003-in. shim against the axle flange face, and then a 0·030-in. shim against it over the bearing cup diameter. The thinner shim must always be placed against the axle face. This ensures, during final assembly, that the thicker shim sits on the bearing cup and permits the assembly to slide during adjustment.
 - Note: Use a 0 1-in. micrometer to verify actual shim thickness.
- n). Tighten the four L.H.S. bolts, while keeping an eye on the R.H.S. to ensure enough slack for bearing cup movement.
- o) Remove the R.H.S. bearing securing plate, apply a smear of grease to the shim faces, and install the 0.003-n. shim first, followed by the 0.030-in. shim. Tighten the bearing securing plate against the shim pack.
- p) With a soft hammer, gently tap the ends of both shafts and check for end float. This should be 0.006-in. which is just discernible by feel while pulling and pushing the axle shaft by hand. The actual end float can be measured using a dial indicator.
 - **Note:** The axle shaft thrust spacer inside the differential has a slotted hole where it fits over the spider gears' shaft. This slot provides sufficient side movement to carry out the shimming process. The importance of end float at the axle shafts can not be stressed enough, if there is a pre-load condition, the bearings will run hot and there could be lubrication problems at the contact points at the spacer.
- q) The re-assembly of the rear axle is a reverse procedure to that given for dismantling. Obviously, the brake system will have to be bled after re-connecting the wheel cylinders.
 - **Note:** Before the rear brake backing plates, the bearing securing plates and the rear hub oil seal bolts are tightened, the oil seal should be centralized. To do this, assemble the components loosely, install the brake drum to centralize the seal, and then tighten the four bolts. Remove the brake drum and fully tighten the four bolts to 28 lb. ft. torque.

All of the foregoing may sound daunting, but it is accurate and there is the peace of mind while driving with the knowledge that all is well with the rear hub bearings. Set out below is information provided by Jowett Cars Limited in their Service Bulletin Item Number 17. See *Technical Notes – Part III – Service Bulletins – Javelin and Jupiter.*)

From Service Bulletin No. 017

"Cases have been reported where an over application of grease to the rear hubs has resulted in brake lining contamination and subsequent brake inefficiency. A 3/32" (2.4 mm) diameter grease relief hole will shortly be incorporated for all rear hub bearings at the rear and outer (hub) end of the axle casing tubes, as shown in the sketches below:"

When greasing rear hubs embodying this feature, hubs should be lubricated until grease just appears from the relief hole. Wipe away any expressed grease and leave the hole filled with grease, to prevent dirt and water ingress. Should an axle housing not have these grease level indication holes, it is worthwhile drilling them as shown in the illustrations below. Do this while the axle housing is clean, and any drill swarf can be easily removed with a small magnet.



Above: Figure 2. Location of the grease relief hole. Right: Figure 3. Side elevation showing relief hole.

Note: These sketches are not to scale.

Personal Comment

It should be noted that axles seen with the relief holes in them, have smaller holes than the $^{3}/_{16}$ -in. diameter called for in *Figure 2*. If a $^{3}/_{32}$ -in. diameter hole is too small, it can be enlarged. It is, however, important that this hole be kept clear at all times.

Mike Allfrey.